Source code for scorers.scorer

import torch
import numpy as np


[docs]class Scorer(): """ Generic scorer """ def __init__(self, scoring_function): """ Parameters ---------- scoring_function: scoring function function to be used on each sample """ self.scoring_function = self._broadcast(scoring_function) def _broadcast(self, function): def broadcasted_function(xs, context): return torch.tensor( np.array([function(x, context) for x in xs]) ) return broadcasted_function
[docs] def score(self, samples, context): """Relies on the instance's scoring function to compute scores for the samples given the context Parameters ---------- samples : list() the samples to score, as a list context: text context that the samples relate to Returns ------- tensor of scores for the samples""" return self.scoring_function(samples, context)